A data assimilation method combined with machine learning and its application to anthropogenic emission adjustment in CUACE model

Reporter: Congwu Huang
Congwu Huang, Tijian Wang, Tao Niu, Mengmeng Li, Hongli Liu, Chaoqun Ma
Nanjing University, China
Chinese Academy of Meteorological Sciences, China

Introduction \& Methods

In order to improve the pollution forecasting accuracy in Chinese unified atmospheric chemistry environment (CUACE) model, a data assimilation method combined with machine learning has been developed and applied to adjust anthropogenic emissions.

- Data assimilation method: Nudging (Kistler, 1974; Hoke and Anthes, 1976)

$$
\frac{\partial \alpha}{\partial t}=F(\alpha, X, t)+G_{a} \frac{\sum_{i=1}^{N} W_{i}^{2}(X, t) \gamma_{i}\left(\alpha_{0}-\hat{\alpha}\right)_{i}}{\sum_{i=1}^{N} W_{i}(X, t)}
$$

Table 1 Extra-Trees splitting algorithm (for numerical attributes)
Splita a node(S)
Input: the local
Input: the local learning subset S corresponding to the node we want to split
Output: a split [$a<a_{c}$] or nothing

- Otherwise select K attributes $\left\{a_{1}, \ldots, a_{K}\right\}$ among all non constant (in S) candidate atributes;
- Otherwise select K attributes $\left\{a_{1}, \ldots, a_{K}\right.$ among al non constant (in S) candidate attri
- Draw K splits $\left\{s_{1}, \ldots, s_{K}\right\}$, where s_{i} Pick arandom split $\left(S, a_{i}\right), \forall i=1, \ldots, K$; - Return a split s_{*} such that Score($\left(s_{*}, S\right)=\max _{i=1, \ldots, K} \operatorname{Score}\left(s_{i}, S\right)$.

Pick_a random_split (\mathbb{S}, a) Inputs: a subset S and an attribute a

- Machine learning method: Extremely random trees (Geurts et al., 2006)

Framework of the Nudging-ExRT method in CUACE

- Nudging method was used to create the database of nudging gain matrixes, using simulations of CUACE and the ground-based observations.
- These data are employed to train a machine learning model using extremely random trees method (ExRT), and to store the relations between nudging gain matrixes and simulations in the trees.

The experiment and assessment of the emission data assimilation in CUACE

Observations: ground-base stations in China
Configurations: Iterative the Nudging gain matrix in 20 o'clock everyday from March 1,2021 to March 8,2021 , each iteration used 72 hours' observations and simulations.

Forecasting time periods: March 9,2021 ~March 14,2021

Domain: China

Pollutants: $\mathrm{PM}_{2.5}, \quad \mathrm{O}_{3}$

The $\mathbf{P M}_{2.5}$ and O_{3} Nugding-ExRT gain matrix in CUCE in March 8, 2021

Nudging-ExRT emission inventories=Original emission inventories •Gain matrix

Results of emission data assimilation- $\mathrm{PM}_{2.5}$

Results of emission data assimilation- O_{3}

The gain matrix of NO_{2} was used to train the emissions of NO_{2} and NO .

The gain matrix of NO_{2} and O_{3} was used to train the emissions of VOCs.

DA-Original

DA

Assessment of the Nudging-ExRT emission data assimilation method

$\mathbf{P M}_{2.5}$:

R increased from 0.39 to 0.45 RMSE decreased from 43.59 $\mu \mathrm{g} / \mathrm{m}^{3}$ to $40.71 \mu \mathrm{~g} / \mathrm{m}^{3}$.
O_{3} :
R increased from 0.08 to 0.11 , RMSE decreased from 63.66 $\mu \mathrm{g} / \mathrm{m}^{3}$ to $56.70 \mu \mathrm{~g} / \mathrm{m}^{3}$.

R :the hourly average spatial correlation coefficient RMSE:the hourly average spatial root mean square error

Conclusion

- This simplicity, efficiently and extensibility framework of NudgingExRT method has been proved to be a good way to adjust anthropogenic emissions in CUACE.
- Nudging-ExRT method can improve the $\mathrm{PM}_{2.5}$ and O_{3} forecasting accuracy in CUACE and the optimization did not weaken even if the iterations were not in one simulation, which means the computing resources is greatly reduced using this method in the operational forecasting.

Thank You!

Email : congwuhuang@smail.nju.edu.cn

