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Sources of Uncertainty 

 Disaggregation Uncertainty 
 Spatial resolution. 
 Spatial distribution of proxies. 
 Temporal distributions of sources.  
 Chemical distributions of profiles. 
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 Real-world emissions result from processes that are generally difficult to 
measure and fully characterize. Anthropogenic and biogenic activities involve 
complex physical and chemical processes such as combustion, evaporation, 
resuspension, erosion, degassing, and others responsible for substantial 
emissions of harmful gaseous and particulate matter air pollutants. 
 

 Emissions inventories (EI) use assumptions and approximations of the 
underlying processes to provide estimates on pollutants’ mass contributions 
and emission characteristics during a given period for sources located in a 
geographic area. They are essential instruments for air quality management 
during the design and evaluation of emission control strategies, air quality 
forecasting, and evaluation of health and environmental impacts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Uncertainty in an EI represents the lack of knowledge of the "real-world" 
emission value1. A high-quality EI has small relative uncertainties and 
systematically neither over -nor underestimates the verifiable emissions. 
Thus, there is a strong need to better characterize uncertainties estimates in 
model-ready EIs used in air quality modeling applications. 
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Figure 1. Emissions inventories are estimated by applying approximations and assumptions of 
the underlying physical and chemical processes in "real-world" emissions. 

 Parametric Uncertainty 
 Random sampling and measurement errors of EF and AD.  
 Representativeness of input data of “real-world” conditions. 
 Missing data. A common challenge in EI preparation is lack of data. 
 Surrogates (proxies) are usually used to account for missing data. 
 Calculation errors. 

 Structural Uncertainty 
 Understanding of emission process. 
 Choice of emission models (simple vs complex).  
 Simplification of emission process (approximations). 

Figure 2. Uncertainties in the inputs are introduced in the spatial disaggregation 
of proxies (A) in the modeling domain (B) from low (B1) to high (B3) resolution. 
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Bottom-up EIs use databases of emission factors (EF) and activity data (AD) to 
estimate emissions. EIs are further transformed into model-ready files for air 
quality models by aggregating emission rates by pollutant and source in a 
computational domain. The sources of uncertainty in the whole process are2: 

Development of Model-Ready EIs 

Figure 3. Model-ready EIs are constructed by pre-processing, processing, and post-processing  
steps with high-dimensionality input data. Each step contributing to the overall EI uncertainty. 

The development of model-ready EIs requires the combination of multiple 
activity data, emission factors, approximations and assumptions that are 
input to emission models3,4. The results are further spatially, temporally, and 
chemically distributed, and post-processed according to the air quality model 
formatting requirements. Uncertainties are introduced in each and all of 
these steps and propagate to the final model-ready EI output. 
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The process is repeated for each source type (area, mobile, and point), 
subcategory (e.g., industrial combustion, gasoline vehicles, etc.), pollutant, 
and time step. Biogenic emissions are obtained with either on-line or off-line 
emission models and the emissions are aggregated.5 The results are gridded 
emissions for each pollutant as a function of time. The process can be 
computationally- and time-demanding, and prone to high uncertainties. 

Figure 4. For each selected modeling domain (A), emissions data are 
gridded in space and distributed in time (B) for each pollutant (C).  
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Other than qualitative methods that rely on 
scores and ratings of input/output data, 
traditional quantitative methods are based 
on either interval analysis or probabilistic 
uncertainty propagation techniques. 

Traditional treatments of Uncertainty 

Comprehensive treatment of Uncertainty 

Emissions Inputs 

Propagation 

Probabilistic 
Methods 

Analytical 
Calculations 

Monte Carlo and  Bootstrap 
Latin hypercube sampling 
Bayesian statistics 
Others (Fourier, quasi-Monte Carlo, etc.) 

They are easy to implement and in some cases they can 
provide exact solutions. However, they have limited 
applicability as their accuracy and simplicity tends to 
diminish as the complexity of the assessment increases. 

Numerical 
Methods 

Sensitivity analysis can also be applied in combination with probabilistic methods to 
identify which inputs contribute the most to the overall uncertainty in the results. 

Traditional treatments of uncertainty 
are often applied to EIs to quantify 
parametric and structural 
uncertainties. However, they are less 
suitable for assessing 
disaggregation uncertainties in 
model-ready EIs for air quality 
modeling applications due to the 
high data dimensionality involved. 
The following guideline for 
treatment of uncertainties in model-
ready EIs for air quality model 
applications is proposed. 

Number of 
parameters Description 

101 – 102 Emission source categories 

1 – 102 Chemical species 

102 – 104 Number of grid cells 

101 – 102 Number of time steps 

The quantification of uncertainties must be an essential component of air quality 
modeling applications, as it describes the accuracy and qualifies the level of 
confidence in the emission fields. Uncertainty analysis applied with sensitivity 
analysis can also help identify inputs that contribute the most to the overall 
uncertainties. However, most modeling applications focus on traditional methods 
for assessing parametric uncertainties and less on structural and disaggregation 
uncertainties of model-ready EIs. An alternative approach for estimating 
desegregation uncertainties of complex systems with high data dimensionality 
can be applied by combining analytical and probabilistic methods. The central 
step in this approach is the emission evaluation using emission measurements, 
satellite data, ambient measurements, and top-down approaches. 

 A. Development of EI with the use of AD, 
EF,  assumptions, approximations and 
emission models. 

 B. Parametric and structural uncertainties 
propagation using traditional 
probabilistic methods. 

 C. Sensitivity analysis to identify larger 
uncertainty contributors. 

 D. EI evaluation with emission 
measurements, observations, and top-
down approaches. 

 If the uncertainties in the EI are not 
adequately constrained, go back to A; 
otherwise go to A’. 

 A’. Development of model-ready EI with 
spatial proxies, as well as temporal and 
chemical profiles. 

 B’. Disaggregation uncertainties 
propagation with analytical methods. 

 C’. Sensitivity analysis to identify larger 
uncertainty contributors. 

 D’. Spatial, temporal and chemical 
evaluation with satellite data, ambient 
measurements. 

 If uncertainties well constrained, it can 
be used for AQM applications, otherwise 
go back to A’. 
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