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1. Background

Deceases of SO2, NOx, and PM2.5 emissions from 

2013 to 2017 in China due to clean air actions

Zhang et al., 2019@PNAS

✓ China’s air pollutant emissions have large inter-annual changes, but the release of emission inventories 

usually lags 1-3 years, leading the latest inventory cannot represent the current actual emission situation.

✓ The bottom-up emission inventories still have large uncertainties.

✓ Making the emission inventories unable to well support the predictions and management of air quality in China

Zhao et al., 2011, ACP

Emission uncertainties for different species in 

China from different studies

Total anthropogenic NOx emissions by 

sector for China during 2005–2015

Liu et al. 2016@ERL
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1. Background

Top-down atmospheric inversion 

uses bottom-up emission inventories 

as a priori, and spatially distributed 

observations as constraints, which is 

one of the ways to improve the 

emission estimates and update the 

emissions timely.
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 Since 2013, China has gradually established a nationwide air

pollution monitoring network (> 1600 national control sites).

The monitoring species include SO2, NO2, CO, O3, PM2.5,

and PM10. These measurements are released hourly by China

National Environmental Monitoring Centre

 Advantages of emission inversion based on surface 

observations

 Our goal is to establish an operational emission 

inversion system based on ground observations, to 

support air quality forecasting and management.

✓ High precision, not affected by the weather

✓ Mostly located in urban, can quickly sense emission changes 

✓ hourly observations

1. Background

Locations of national control monitoring sites



2. System description
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A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) 

Flow chart of RAPAS v1.0

 CTM: WRFv4.0 + CMAQv5.0.2

 Initial field DA: 3D-Var

 Emission inversion: EnSRF

 The emissions of SO2, NOx, CO, 

primary PM2.5 and coarse PM10 are 

inferred simultaneously; point and 

area emissions are estimated 

separately

t0✓ First, the prior emissions in 

each grid are optimized 

through data assimilation, 

✓ Second, the initial field of the 

next window is optimized 

using the posterior emissions 

through forward simulation, 

✓ Meanwhile, the posterior 

emissions are transferred to 

the next window as its prior 

emissions.



2. System description

Detailed operation process

 The system is divided into IA and EI subsystems, IA is  to 

provide a well chemical ICs for the following EI, and EI is 

run cyclically to optimize the emissions

 Number of ensembles: 40

 DA window: 1 day, due to the complexity of hourly 

emissions, it is very difficult to simulate hourly 

concentrations that can match the observations well

 Localization scale: set according to the DA window, mean wind 

speed, and lifetime of  different species

Species CO SO2 NO2 PM2.5 PMC

Lifetime ~2 m > 1 d ~10 h > 1 d < 1 d

Localization 

(km)
300 300 150 300 250



 Prior emissions

➢ Multi-resolution Emission Inventory for China (MEIC, 0.25°); Mosaic Asian 

Anthropogenic Emission Inventory for outside China (MIX, 0.25°)

➢ The uncertainties of SO2, NOx, CO, primary PM2.5 and coarse PM10

emissions are set to 25%, 25%, 30%, 40%, and 40% in each model grid.

➢ Biogenic emissions are not optimized, biomass burning emissions are not 

included.

2. System description

Model domain

 Model domain and main configurations

➢ covers the whole mainland of China, with grid spacing of 36 km

➢ Vertical layers: WRF 51 sigma levels, and CMAQ 16 layers

➢ Gas phase and aerosol scheme: CB05tucl + AERO6

➢ Chemical boundary conditions: idea profile



 Observation error

➢ Measurement error, 𝜀0 = 𝑒𝑟𝑚𝑎𝑥 + 𝑒𝑟𝑚𝑖𝑛 ∗ Π0

➢ Representation error, 𝜀𝑟 = 𝛾𝜀0 ΤΔ𝑥 𝐿（  , tunable parameter; 

Δ𝑥, grid spacing; L, observation scale）

➢ Total error, ε = 𝜀0
2 + 𝜀𝑟

2

Parameter
CO

mg/m3

SO2

μg/m3

NO2

μg/m3

O3

μg/m3

PM2.5

μg/m3

PMC

μg/m3

value‐range 

check
0.1~12 1~800 1~250 1~250 1~800 1~900

time-continuity 

check
2.5 160 70 80 180 180

ermax 0.05 1 1 1 1.5 1.5

ermin 0.5% 0.5% 0.5% 0.5% 0.75% 0.75%

2. System description

 Observations

➢ Hourly averaged observations (SO2, NO2, CO , PM2.5 and PM10) 

from over 1600 national control air quality stations

➢ Super-observation: A super-observation is generated by averaging 

all observations located within the same model grid within a DA 

window.

Locations of the surface observations



The CO, SO2, NOx, and primary PM2.5 emissions increase by 129%, 20%, 5%, and 95%, respectively.

Emission estimates for December 2016

2. System evaluations

Prior emission: MEIC 2016; Obs.: 1504 national control sites

Posterior Posterior - prior Posterior Posterior - prior

CO

SO2

NOx

Primary

PM2.5

Compared with prior emission,

✓ The optimized CO emissions 

are increased across most 

areas of mainland China, 

especially in northern China. 

✓ The inverted NOx emissions 

are decreased over YRD and 

north China plain, while in 

southern, western China, 

they are increased. 

✓ For SO2 and primary PM2.5, 

the inverted emissions are 

decreased over YRD, part of 

North China plain, and 

central China. 



Evaluating the simulated concentrations with observations2. System evaluations

Specie

s

Mean 

Obs.

Mean Sim. BIAS RMSE CORR

CEP VEP CEP VEP CEP VEP CEP VEP

Against assimilated observations

CO 1.43 0.66 1.36 -0.77 -0.08 1.08 0.56 0.46 0.81 

SO2
32.5 34.4 28.4 1.9 -4.1 42.4 17.7 0.39 0.88 

NO2
43.8 40.8 39.0 -2.9 -4.8 25.0 12.3 0.65 0.88 

PM2.5
77.0 53.1 70.3 -24.0 -6.7 50.3 29.6 0.64 0.87 

PMC 40.5 8.1 37.5 -32.4 -3.1 41.5 24.6 0.25 0.69 

Against independent observations

CO 1.54 0.79 1.52 -0.75 -0.02 1.15 0.72 0.59 0.82 

SO2
40.6 39.2 37.3 -1.3 -3.2 44.3 27.2 0.57 0.87 

NO2
50.2 50.0 47.5 -0.3 -2.7 21.7 15.9 0.73 0.83 

PM2.5
91.5 64.6 84.1 -26.9 -7.4 64.1 37.2 0.62 0.87 

PMC 42.0 9.2 40.4 -32.8 -1.6 39.3 26.6 0.39 0.62 

CEP: Simulation experiment using original prior emissions

VEP: simulation experiment using posterior emissions

✓ With prior emission, large negative or positive biases, with posterior emissions, in most sites, the biases  are largely reduced.

✓ The RMSE decreases by about 40% and 30% against assimilated and independent observations, CORR significantly increased. 

Assimilated sites independent sites

Distribution of mean biases at different sites 



Impact of different prior inventories on emission estimates

MEIC 2012 and MEIC 2016 were used as a priori for the emission estimates in December 2016

➢ The differences between the two posterior emissions 

gradually decrease over time, the quick convergence of 

PMC is due to large prior uncertainty of 100% used in 

the first 3 DA windows.

➢ More SO2 and NOx emissions result in more secondary 

PM2.5, leading to less primary PM2.5 emission estimated.

2. System evaluations

2.5%

4.5%

4.5%

-8.9%

3.0%

Relative differences in the inverted CO, SO2, NOx, primary 

PM2.5 and coarse PM10 emissions using different prior emissions

Observed and simulated daily PM2.5 concentrations

With MEIC 2016

With inverted emis. MEIC 2016 as a priori

With MEIC 2012

With inverted emis. MEIC 2012 as a priori

Observations



Impact of emission uncertainty settings on emission estimates

➢ A larger  prior emission uncertainty, results in larger day-to-day variation of inverted emission, and stronger emission.

➢ When the uncertainty increases or decreases, the RMSE of the simulated concentrations with posterior emissions will 

increase.

2. System evaluations

EMS3：-50%

EMS4：-25%

EMDA：default

EMS5：+25%

EMS6：+50%

Inverted daily SO2 emissions Daily RMSE of simulated SO2 conc.



3. Applications

Impact on the regional air quality forecasts in China

The inverted emissions of current day are used in the forecasts for next 72 hours every day

The frequency distribution of the relative biases Time series of hourly RMSE 

✓ Study period: December 2016

✓ The forecasting results over 

the entire 72 hours are 

improved, with mean RMSE 

decreased by 45%, 57%, 44%, 

35% and 41% for CO, SO2, 

NO2, PM2.5 and PM10.

✓ The relative biases are more 

concentrated, mean biases 

decreased from -53%, 47%, -

7%, -26% and -46% to -4%, -

2%, -12%, -7% and -4%. 



➢ The CO emissions in December 2013 and 2017 are optimized using the 

observations in the corresponding period. The same sites were adopted.

➢ The spatial patterns of the increases in the two periods are similar

➢ For Mainland China, NCP, YRD, and PRD

✓ Dec 2013: increased by 186%, 174%, 168% and 210%

✓ Dec 2017: increased by 178%, 183%, 126% and 109%

➢ With posterior emissions, the performance of the simulated CO in

Decembers of 2013 and 2017 are comparable.

Pri.

Post.

Diff.

Dec 2013 Dec 2017

CO emission changes during the first stage clean air action (2013-2017)

3. Applications



➢ The posterior CO emissions in 2017 are 17% lower than 

those in  2013

➢ Emission decreases in most key urban areas and 

developed regions, while increases in  surrounding areas 

and certain central and western regions

Emissions changes between December 2013 and 2017

Suggesting a emission migration from 

developed regions or urban areas to 

developing regions or surrounding areas.

3. Applications CO emission changes during the first stage clean air action

Emission changes based on inverted emissions



Emissions changes between December 2013 and 2017

3. Applications CO emission changes during the first stage clean air action

Emission changes based on prior emission inventoriesEmission changes based on inverted emissions



Pri. Post. Obs.

NOx emission changes during the COVID-19 lockdown in 2020

3. Applications

Time series of 5-day averaged posterior emissionsDaily simulated and observed NO2 concentrations

➢ Daily NOx emissions are 

inferred using RAPAS and 

hourly NO2 observations over 

China from 10 Jan to 28 Feb, 

2020.

➢ The simulated NO2 with 

posterior emissions well match 

the observations.

➢ Two obvious processes of an 

initial decrease and subsequent 

increase in NOx emissions.

✓ The first one, spring 

festival, NOx decrease is 

because of holiday, increase 

is due to fireworks.

✓ The second one, lockdown

Spring Festival (SF) lockdown



Compared with the emissions during 11-20 Jan, 

2020

➢ Fell by more than 60% in many large cities 

and ~30% most small to medium cities

➢ Fell by 47% in the 74 key cities

➢ Slightly increased in certain remote areas, 

probably due to the return of workers from 

urban to rural, which increase the residential 

emissions in those areas.

Maximum emission reduction (%)

3. Applications NOx emission changes during the COVID-19 lockdown in 2020



4. Summary and limitations

1. We constructed a Regional multi-Air Pollutant Assimilation System (RAPASv1.0) based on the WRF/CMAQ model, 

3DVAR and EnKF algorithm, which can optimize gridded and daily emissions of CO, SO2, NOx, primary PM2.5 and 

coarse PM10 on regional scale by simultaneously assimilating hourly in-situ measurements.

2. Limitations

1. A idea profile is used for chemical boundary conditions, and no observation outside China is used, which may 

leads to an overestimated emissions in China, especially for long lived species.

2. Model error is not considered, all model-mismatch error is attributed to the uncertainty in emissions.

3. The WRF-CMAQ model (off-line version) used in this system does not consider the feedbacks from chemistry 

to meteorology, which may also results in an overestimation of emissions, especially during winter.  

4. Primary PM2.5 may be still overestimated due to no observations of NH3 and VOCs, more evaluations with PM2.5

components are needed.

5. Wind-blown sand and dust was not calculated, resulting in significantly overestimated coarse PM10 emissions.
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