Development and Evaluation of North America Ensemble Wildfire Forecast:

Initial Application to the 2020 Western United States "Gigafire"

Peewara Makkaroon¹

Co-authors: Daniel Tong¹, Yunyao Li¹, Youhua Tang², Barry Baker², Mark Cohen³, Rick Saylor³, Anton Darmenov⁴, Alexei Lyapustin⁴, Yujie Wang⁴, Edward Hyer⁵, Peng Xian⁵, Ivanka Stajner⁶

¹Air Quality Group of George Mason University, ²NOAA Air Resources Laboratory (ARL)/GMU, ³NOAA Air Resources Lab,⁴NASA Goddard Space Flight Center (GSFC), ⁵Naval Research Laboratory (NRL), ⁶NOAA National Weather Service.

Background

The 2020 Gigafire in the Western US

- During August-September 2020 in Northern California
- **Burning more than 1-million acres** and destroyed 935 structures.

Ensemble Forecast

- Can reduce uncertainties in input emission and meteorological data, and simulation of each model by averaging them out.

Objective

 To improve forecasting performance of PM_{2.5} and AOD during fire events across the US by developing a multi-model ensemble wildfire forecast using regional and global models over the Continental United States (CONUS) domain.

 $\text{PM}_{2.5}$: Particulate Matter less than 2.5 μm in diameter AOD : Aerosol Optical Depth

VIIRS true color and EPA AQS daily PM_{2.5} observations (circles) on September 12, 2020 from NOAA AerosolWatch.

Multi-Model Ensemble Forecast

Ensemble Members

Regional models:

- GMU-CMAQ, NACC-CMAQ, HYSPLIT;

Global models:

- GEFS-Aerosols, GEOS, NAAPS;

Global Multi-Model Ensemble:

- ICAP-MME

Ensemble Creation

- Grid resolutions of all models were interpolated to 12km×12km before calculating their mean PM_{2.5} concentrations and AOD values.
- **Ensemble mean** was calculated based on mean PM₂₅ and AOD of each ensemble member.

Ensemble Forecast

- Provides 24-hour PM₂₅ and AOD forecast on a 12km×12km grid resolution over the CONUS domain.
- Forecast time starts from 12 UTC next day 11 UTC.

GMU-CMAQ (George Mason University Community Multiscale Air Quality), NACC-CMAQ (NOAA-EPA Atmosphere-Chemistry Coupler Community Multiscale Air Quality), HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory), HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory), GEFS-Aerosols (Global Ensemble Forecast System Aerosols), GEOS (NASA Goddard Earth Observing System), ICAP-MME (International Cooperative for Aerosol Prediction Multi-Model aerosol forecasting Ensemble), NAAPS (Navy Aerosol Analysis and Prediction System)

Surface PM_{2.5} Simulations (Aug 22, 2020)

Model-2

Model-4

Model-7

80°W

ug/m

80°W

80°W

90°W

90°W

90°W

.....

Individual Models

4

AOD Simulations (Aug 22, 2020)

5

Model Evaluation Metrics

1. Traditional metrics

Root Mean Square Error (RMSE) Correlation (CORR), Fractional Bias (FB), Mean Bias(MB), Mean Error (ME), Normalized mean Bias(NMB), Normalized Mean Error(NME).

2. Categorical metrics (Kang et al., 2007)

Used to measure performance of model in forecasting $PM_{2.5}$ exceedances (>35 µg/m³)

during extreme fire periods.

Area Hit Rate (aH)

Refers to a number of hits if a forecast exceedance is observed within the designated area centered at the observation location.

$$aH = \left(\frac{Ab}{Ab + Ad}\right) \times 100\%$$

Area False Alarm Ratio (aFAR)

Refers to a number of forecast false-alarm ratios if a forecast exceedance is not observed within the area centered at the observation location.

$$aFAR = \left(\frac{Aa}{Aa + Ab}\right) \times 100\%$$

Aa is the number of forecast exceedances that were not observed, **Ab** is the number of forecast exceedance that were observed, and **Ad** is the number of observed exceedances that were not forecasted.

3. Overall Rating (RANK)

Used to determine the overall forecasting performance of ensemble mean.

For PM_{2.5}, Rank = sum of Normalized CORR, FB, aH, aFAR, ranging from 0 (worst) to 4 (best). For AOD, Rank = sum of Normalized CORR, FB, ranging from 0 (worst) to 2 (best).

Model Performance

1. PM_{2.5} Prediction vs. AirNow

Table 1. Overall ensemble mean and individual model performances in forecasting PM_{25} concentrations during the 2020 Gigafire event (August-September 2020)

Model	RMSE	CORR	MB	аH	aFAR	FB	RANK
Model-1	24.854	0.542	3.107	69.046	44.359	0.548	2.811
Model-2	16.726	0.477	-4.540	39.753	24.121	0.597	2.723
Model-3	19.714	0.432	-4.614	71.658	47.734	1.323	2.375
Model-4	48.878	0.496	17.809	81.245	75.933	0.881	2.402
Model-5	49.388	0.438	11.566	80.438	68.652	0.773	2.493
Model-7	31.054	0.544	10.145	82.195	62.706	0.664	2.673
Ensemble Mean	24.059	0.609	6.537	86.827	60.393	0.530	2.832

2. AOD Prediction vs. MAIAC

Table 2. Overall ensemble mean and individual model performances in forecastingAOD values during the 2020 Gigafire event (August-September 2020)

Models	RMSE	CORR	MB	FB	RANK
Model-1	0.280	0.569	-0.154	0.983	1.293
Model-2	0.296	0.524	-0.182	1.184	1.170
Model-3	0.355	0.368	-0.128	1.345	1.012
Model-4	0.241	0.521	-0.075	0.614	1.453
Model-5	0.858	0.458	0.201	0.773	1.342
Model-6	0.259	0.525	-0.128	0.897	1.314
Ensemble Mean	0.276	0.587	-0.074	0.711	1.469

The highest RANK is highlighted in **bold red**.

Ensemble Probability Forecast of PM_{2.5} **Exceedances**

Ensemble forecast can provide a probabilistic forecast based on the spread of the ensemble members.

6 Members: GMU-CMAQ, NACC-CMAQ, GEFS-Aerosols, GEOS, HYSPLIT, and NAAPS.

P(A) = Number of models that forecast the exceedances/ Total number of models

100% : All models forecast the exceedances
83.33% : 5 out of 6 models forecast the exceedances
66.67% : 4 out of 6 models forecast the exceedances
50% : 3 out of 6 models forecast the exceedances
33.33% : 2 out of 6 models forecast the exceedances
16.67% : 1 out of 6 models forecast the exceedances
0% : None of models forecast the exceedances

Ensemble Probability Forecast - PM₂₅ Exceedances

Conclusions

- 1. On average the ensemble forecast can reduce bias and uncertainties in forecasting by averaging them out.
- 2. In most cases, the ensemble forecast provides superior forecasting performance compared to the individual models.
- 3. Our next step is to test the multi-model ensemble forecast with the 2021 Spring dust event (January-March 2021) in the Western US.

Acknowledgement

Funding support: NASA Health and Air Quality Program

- **GMU-CMAQ** from Air Quality Group of George Mason University (http://air.csiss.gmu.edu/);
- NACC-CMAQ and GEFS-Aerosols from NOAA Air Resources Laboratory (ARL)/GMU;
- **HYSPLIT** from NOAA Air Resources Lab;
- **GEOS** from NASA Goddard Space Flight Center (GSFC);
- ICAP-MME and NAAPS from Naval Research Laboratory (NRL);
- **MAIAC** from NASA GSFC;